最近,基于得分的扩散模型在MRI重建中表现出令人满意的性能。这些方法中的大多数都需要大量完全采样的MRI数据作为培训集,有时在实践中很难获得。本文提出了用于MRI重建的完全采样的基于无DATA的分数扩散模型,该模型以不足的采样数据以自我监督的方式学习了完全采样的MR图像。具体而言,我们首先通过贝叶斯深度学习从未采样的数据中推断出完全采样的MR图像分布,然后通过训练分数函数来扰动数据分布并近似其概率密度梯度。利用学到的分数函数为先验,我们可以通过执行条件的Langevin Markov链蒙特卡洛(MCMC)采样来重建MR图像。公共数据集的实验表明,所提出的方法优于现有的自我监督的MRI重建方法,并与常规(完全采样的数据训练)基于得分的扩散方法实现可比性的性能。
translated by 谷歌翻译
降解扩散概率模型(DDPM)已显示在MRI重建中具有出色的性能。从连续的随机微分方程(SDE)的角度来看,DDPM的反向过程可被视为最大化重建的MR图像的能量,从而导致SDE序列发散。因此,提出了用于MRI重建的修改高频DDPM模型。从其连续的SDE观点(称为高频空间SDE)(HFS-SDE),MR图像的能量浓缩低频部分不再得到放大,并且扩散过程更多地集中在获取高频的先验信息上。它不仅提高了扩散模型的稳定性,而且还提供了更好地恢复高频细节的可能性。公开FastMRI数据集的实验表明,我们提出的HFS-SDE优于DDPM驱动的VP-SDE,有监督的深度学习方法和传统的平行成像方法,就稳定性和重建精度而言。
translated by 谷歌翻译
Target-specific stance detection on social media, which aims at classifying a textual data instance such as a post or a comment into a stance class of a target issue, has become an emerging opinion mining paradigm of importance. An example application would be to overcome vaccine hesitancy in combating the coronavirus pandemic. However, existing stance detection strategies rely merely on the individual instances which cannot always capture the expressed stance of a given target. In response, we address a new task called conversational stance detection which is to infer the stance towards a given target (e.g., COVID-19 vaccination) when given a data instance and its corresponding conversation thread. To tackle the task, we first propose a benchmarking conversational stance detection (CSD) dataset with annotations of stances and the structures of conversation threads among the instances based on six major social media platforms in Hong Kong. To infer the desired stances from both data instances and conversation threads, we propose a model called Branch-BERT that incorporates contextual information in conversation threads. Extensive experiments on our CSD dataset show that our proposed model outperforms all the baseline models that do not make use of contextual information. Specifically, it improves the F1 score by 10.3% compared with the state-of-the-art method in the SemEval-2016 Task 6 competition. This shows the potential of incorporating rich contextual information on detecting target-specific stances on social media platforms and implies a more practical way to construct future stance detection tasks.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译